Archive for the 'Non-Photorealistic Rendering' Category

C# How to: Image Distortion Blur

Article Purpose

This article explores the process of implementing an Image Distortion Blur filter. This image filter is classified as a non-photo realistic image filter, primarily implemented in rendering artistic effects.

Flower: Distortion Factor 15

Flower: Distortion Factor 15

Sample Source Code

This article is accompanied by a sample source code Visual Studio project which is available for download here.

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Using the Sample Application

The sample source code that accompanies this article includes a based sample application. The concepts explored in this article have all been implemented as part of the sample application. From an end user perspective the following configurable options are available:

  • Load/Save Images – Clicking the Load Image button allows a user to specify a source/input . If desired, output filtered can be saved to the local system by clicking the Save Image button.
  • Distortion Factor – The level or intensity of distortion applied when implementing the filter can be specified when adjusting the Distortion Factor through the user interface. Lower factor values result in less distortion being evident in resulting . Specifying higher factor values result in more intense distortion being applied.

The following image is screenshot of the Image Distortion Blur sample application:

ImageDistortionBlur_SampleApplication

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Image Distortion

In this article and the accompanying sample source code are distorted through slightly adjusting each individual ’s coordinates. The direction and distance by which coordinates are adjusted differ per as a result of being randomly selected. The maximum distance offset applied depends on the user specified Distortion Factor. Once all coordinates have been updated, implementing a provides smoothing and an effect.

Applying an Image Distortion Filter requires implementing the following steps:

  1. Iterate Pixels – Each forming part of the source/input should be iterated.
  2. Calculate new Coordinates – For every being iterated generate two random values representing XY-coordinate offsets to be applied to a ’s current coordinates. Offset values can equate to less than zero in order to represent coordinates above or to the left of the current .
  3. Apply Median Filter – The newly offset will appear somewhat speckled in the resulting . Applying a reduces the speckled appearance whilst retaining a distortion effect.

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Median Filter

Applying a is the final step required when implementing an Image Distortion Blur filter. are often implemented in reducing . The method of image distortion illustrated in this article express similarities when compared to . In order to soften the appearance of we implement a .

A can be applied through implementing the following steps:

  1. Iterate Pixels – Each forming part of the source/input should be iterated.
  2. Inspect Pixel Neighbourhood – Each neighbouring in relation to the currently being iterated should be added to a temporary collection.
  3. Determine Neighbourhood Median – Once all neighbourhood have been added to a temporary collection, sort the collection by value. The element value located at the middle of the collection represents the neighbourhood’s value.

Flower: Distortion Factor 10

Flower: Distortion Factor 10

Flower: Distortion Factor 15

Flower: Distortion Factor 15

Implementing Image Distortion

The sample source code defines the DistortionBlurFilter method, an targeting the class. The following code snippet illustrates the implementation:

public static Bitmap DistortionBlurFilter( 
         this Bitmap sourceBitmap, int distortFactor) 
{
    byte[] pixelBuffer = sourceBitmap.GetByteArray(); 
    byte[] resultBuffer = sourceBitmap.GetByteArray(); 

int imageStride = sourceBitmap.Width * 4; int calcOffset = 0, filterY = 0, filterX = 0; int factorMax = (distortFactor + 1) * 2; Random rand = new Random();
for (int k = 0; k + 4 < pixelBuffer.Length; k += 4) { filterY = distortFactor - rand.Next(0, factorMax); filterX = distortFactor - rand.Next(0, factorMax);
if (filterX * 4 + (k % imageStride) < imageStride && filterX * 4 + (k % imageStride) > 0) { calcOffset = k + filterY * imageStride + 4 * filterX;
if (calcOffset >= 0 && calcOffset + 4 < resultBuffer.Length) { resultBuffer[calcOffset] = pixelBuffer[k]; resultBuffer[calcOffset + 1] = pixelBuffer[k + 1]; resultBuffer[calcOffset + 2] = pixelBuffer[k + 2]; } } }
return resultBuffer.GetImage(sourceBitmap.Width, sourceBitmap.Height).MedianFilter(3); }

Flower: Distortion Factor 15

Flower: Distortion Factor 15

Implementing a Median Filter

The MedianFilter targets the class. The implementation as follows:

public static Bitmap MedianFilter(this Bitmap sourceBitmap, 
                                  int matrixSize) 
{ 
    byte[] pixelBuffer = sourceBitmap.GetByteArray(); 
    byte[] resultBuffer = new byte[pixelBuffer.Length]; 
    byte[] middlePixel; 

int imageStride = sourceBitmap.Width * 4; int filterOffset = (matrixSize - 1) / 2; int calcOffset = 0, filterY = 0, filterX = 0; List<int> neighbourPixels = new List<int>();
for (int k = 0; k + 4 < pixelBuffer.Length; k += 4) { filterY = -filterOffset; filterX = -filterOffset; neighbourPixels.Clear();
while (filterY <= filterOffset) { calcOffset = k + (filterX * 4) + (filterY * imageStride);
if (calcOffset > 0 && calcOffset + 4 < pixelBuffer.Length) { neighbourPixels.Add(BitConverter.ToInt32( pixelBuffer, calcOffset)); }
filterX++;
if (filterX > filterOffset) { filterX = -filterOffset; filterY++; } }
neighbourPixels.Sort(); middlePixel = BitConverter.GetBytes( neighbourPixels[filterOffset]);
resultBuffer[k] = middlePixel[0]; resultBuffer[k + 1] = middlePixel[1]; resultBuffer[k + 2] = middlePixel[2]; resultBuffer[k + 3] = middlePixel[3]; }
return resultBuffer.GetImage(sourceBitmap.Width, sourceBitmap.Height); }

Flower: Distortion Factor 25

Flower: Distortion Factor 25

Sample Images

This article features a number of sample images. All featured images have been licensed allowing for reproduction. The following images feature as sample images:

674px-Lil_chalcedonicum_01EB_Griechenland_Hrisomiglia_17_07_01

683px-Lil_carniolicum_subsp_ponticum_01EB_Tuerkei_Ikizdere_02_07_93

1022px-LiliumSargentiae

1024px-Lilium_longiflorum_(Easter_Lily)

1280px-LiliumBulbiferumCroceumBologna

LiliumSuperbum1

Orange_Lilium_-_Relic38_-_Ontario_Canada

White_and_yellow_flower

Related Articles and Feedback

Feedback and questions are always encouraged. If you know of an alternative implementation or have ideas on a more efficient implementation please share in the comments section.

I’ve published a number of articles related to imaging and images of which you can find URL links here:

C# How to: Fuzzy Blur Filter

Article Purpose

This article serves to illustrate the concepts involved in implementing a Fuzzy Blur Filter. This filter results in rendering  non-photo realistic images which express a certain artistic effect.

Frog: Filter Size 19×19

Frog: Filter Size 19x19

Sample Source Code

This article is accompanied by a sample source code Visual Studio project which is available for download here.

Using the Sample Application

The sample source code accompanying this article includes a based test application. The concepts explored throughout this article can be replicated/tested using the sample application.

When executing the sample application the user interface exposes a number of configurable options:

  • Loading and Saving Images – Users are able to load source/input from the local system by clicking the Load Image button. Clicking the Save Image button allow users to save filter result .
  • Filter Size – The specified filter size affects the filter intensity. Smaller filter sizes result in less blurry being rendered, whereas larger filter sizes result in more blurry being rendered.
  • Edge Factors – The contrast of fuzzy expressed in resulting depend on the specified edge factor values. Values less than one result in detected being darkened and values greater than one result in detected image edges being lightened.

The following image is a screenshot of the Fuzzy Blur Filter sample application in action:

Fuzzy Blur Filter Sample Application

Frog: Filter Size 9×9

Frog: Filter Size 9x9

Fuzzy Blur Overview

The Fuzzy Blur Filter relies on the interference of when performing in order to create a fuzzy effect. In addition results from performing a .

The steps involved in performing a Fuzzy Blur Filter can be described as follows:

  1. Edge Detection and Enhancement – Using the first edge factor specified enhance by performing Boolean Edge detection. Being sensitive to , a fair amount of detected will actually be in addition to actual .
  2. Mean Filter Blur – Using the edge enhanced created in the previous step perform a blur. The enhanced edges will be blurred since a does not have edge preservation properties. The size of the implemented depends on a user specified value.
  3. Edge Detection and Enhancement –  Using the blurred created in the previous step once again perform Boolean Edge detection, enhancing detected edges according to the second edge factor specified.

Frog: Filter Size 9×9

Frog: Filter Size 9x9

Mean Filter

A Blur, also known as a , can be performed through . The size of the / implemented when preforming will be determined through user input.

Every / element should be set to one. The resulting value should be multiplied by a factor value equating to one divided by the / size. As an example, a / size of 3×3 can be expressed as follows:

Mean Kernel

An alternative expression can also be:

Mean Kernel

Frog: Filter Size 9×9

Frog: Filter Size 9x9

Boolean Edge Detection without a local threshold

When performing Boolean Edge Detection a local threshold should be implemented in order to exclude . In this article we rely on the interference of in order to render a fuzzy effect. By not implementing a local threshold when performing Boolean Edge detection the sample source code ensures sufficient interference from .

The steps involved in performing Boolean Edge Detection without a local threshold can be described as follows:

  1. Calculate Neighbourhood Mean – Iterate each forming part of the source/input . Using a 3×3 size calculate the mean value of the neighbourhood surrounding the currently being iterated.
  2. Create Mean comparison Matrix – Once again using a 3×3 size compare each neighbourhood to the newly calculated mean value. Create a temporary 3×3 size , each element’s value should be the result of mean comparison. Should the value expressed by a neighbourhood exceed the mean value the corresponding temporary element should be set to one. When the calculated mean value exceeds the value of a neighbourhood the corresponding temporary  element should be set to zero.
  3. Compare Edge Masks – Using sixteen predefined edge masks compare the temporary created in the previous step to each edge mask. If the temporary matches one of the predefined edge masks multiply the specified factor to the currently being iterated.

Note: A detailed article on Boolean Edge detection implementing a local threshold can be found here:

Frog: Filter Size 9×9

Frog: Filter Size 9x9

The sixteen predefined edge masks each represent an in a different direction. The predefined edge masks can be expressed as:

Boolean Edge Masks

Frog: Filter Size 13×13

Frog: Filter Size 13x13

Implementing a Mean Filter

The sample source code defines the MeanFilter method, an targeting the class. The definition listed as follows:

private static Bitmap MeanFilter(this Bitmap sourceBitmap, 
                                 int meanSize)
{
    byte[] pixelBuffer = sourceBitmap.GetByteArray(); 
    byte[] resultBuffer = new byte[pixelBuffer.Length];

double blue = 0.0, green = 0.0, red = 0.0; double factor = 1.0 / (meanSize * meanSize);
int imageStride = sourceBitmap.Width * 4; int filterOffset = meanSize / 2; int calcOffset = 0, filterY = 0, filterX = 0;
for (int k = 0; k + 4 < pixelBuffer.Length; k += 4) { blue = 0; green = 0; red = 0; filterY = -filterOffset; filterX = -filterOffset;
while (filterY <= filterOffset) { calcOffset = k + (filterX * 4) + (filterY * imageStride);
calcOffset = (calcOffset < 0 ? 0 : (calcOffset >= pixelBuffer.Length - 2 ? pixelBuffer.Length - 3 : calcOffset));
blue += pixelBuffer[calcOffset]; green += pixelBuffer[calcOffset + 1]; red += pixelBuffer[calcOffset + 2];
filterX++;
if (filterX > filterOffset) { filterX = -filterOffset; filterY++; } }
resultBuffer[k] = ClipByte(factor * blue); resultBuffer[k + 1] = ClipByte(factor * green); resultBuffer[k + 2] = ClipByte(factor * red); resultBuffer[k + 3] = 255; }
return resultBuffer.GetImage(sourceBitmap.Width, sourceBitmap.Height); }

Frog: Filter Size 19×19

Frog: Filter Size 19x19

Implementing Boolean Edge Detection

Boolean Edge detection is performed in the sample source code through the implementation of the BooleanEdgeDetectionFilter method. This method has been defined as an targeting the class.

The following code snippet provides the definition of the BooleanEdgeDetectionFilter :

public static Bitmap BooleanEdgeDetectionFilter( 
       this Bitmap sourceBitmap, float edgeFactor) 
{
    byte[] pixelBuffer = sourceBitmap.GetByteArray(); 
    byte[] resultBuffer = new byte[pixelBuffer.Length]; 
    Buffer.BlockCopy(pixelBuffer, 0, resultBuffer, 
                     0, pixelBuffer.Length); 

List<string> edgeMasks = GetBooleanEdgeMasks(); int imageStride = sourceBitmap.Width * 4; int matrixMean = 0, pixelTotal = 0; int filterY = 0, filterX = 0, calcOffset = 0; string matrixPatern = String.Empty;
for (int k = 0; k + 4 < pixelBuffer.Length; k += 4) { matrixPatern = String.Empty; matrixMean = 0; pixelTotal = 0; filterY = -1; filterX = -1;
while (filterY < 2) { calcOffset = k + (filterX * 4) + (filterY * imageStride);
calcOffset = (calcOffset < 0 ? 0 : (calcOffset >= pixelBuffer.Length - 2 ? pixelBuffer.Length - 3 : calcOffset)); matrixMean += pixelBuffer[calcOffset]; matrixMean += pixelBuffer[calcOffset + 1]; matrixMean += pixelBuffer[calcOffset + 2];
filterX += 1;
if (filterX > 1) { filterX = -1; filterY += 1; } }
matrixMean = matrixMean / 9; filterY = -1; filterX = -1;
while (filterY < 2) { calcOffset = k + (filterX * 4) + (filterY * imageStride);
calcOffset = (calcOffset < 0 ? 0 : (calcOffset >= pixelBuffer.Length - 2 ? pixelBuffer.Length - 3 : calcOffset));
pixelTotal = pixelBuffer[calcOffset]; pixelTotal += pixelBuffer[calcOffset + 1]; pixelTotal += pixelBuffer[calcOffset + 2]; matrixPatern += (pixelTotal > matrixMean ? "1" : "0"); filterX += 1;
if (filterX > 1) { filterX = -1; filterY += 1; } }
if (edgeMasks.Contains(matrixPatern)) { resultBuffer[k] = ClipByte(resultBuffer[k] * edgeFactor);
resultBuffer[k + 1] = ClipByte(resultBuffer[k + 1] * edgeFactor);
resultBuffer[k + 2] = ClipByte(resultBuffer[k + 2] * edgeFactor); } }
return resultBuffer.GetImage(sourceBitmap.Width, sourceBitmap.Height); }

Frog: Filter Size 13×13

Frog: Filter Size 13x13

The predefined edge masks implemented in mean comparison have been wrapped by the GetBooleanEdgeMasks method. The definition as follows:

public static List<string> GetBooleanEdgeMasks() 
{
    List<string> edgeMasks = new List<string>(); 

edgeMasks.Add("011011011"); edgeMasks.Add("000111111"); edgeMasks.Add("110110110"); edgeMasks.Add("111111000"); edgeMasks.Add("011011001"); edgeMasks.Add("100110110"); edgeMasks.Add("111011000"); edgeMasks.Add("111110000"); edgeMasks.Add("111011001"); edgeMasks.Add("100110111"); edgeMasks.Add("001011111"); edgeMasks.Add("111110100"); edgeMasks.Add("000011111"); edgeMasks.Add("000110111"); edgeMasks.Add("001011011"); edgeMasks.Add("110110100");
return edgeMasks; }

Frog: Filter Size 19×19

Frog: Filter Size 19x19

Implementing a Fuzzy Blur Filter

The FuzzyEdgeBlurFilter method serves as the implementation of a Fuzzy Blur Filter. As discussed earlier a Fuzzy Blur Filter involves enhancing through Boolean Edge detection, performing a blur and then once again performing Boolean Edge detection. This method has been defined as an extension method targeting the class.

The following code snippet provides the definition of the FuzzyEdgeBlurFilter method:

public static Bitmap FuzzyEdgeBlurFilter(this Bitmap sourceBitmap,  
                                         int filterSize,  
                                         float edgeFactor1,  
                                         float edgeFactor2) 
{
    return  
    sourceBitmap.BooleanEdgeDetectionFilter(edgeFactor1). 
    MeanFilter(filterSize).BooleanEdgeDetectionFilter(edgeFactor2); 
}

Frog: Filter Size 3×3

Frog: Filter Size 3x3

Sample Images

This article features a number of sample images. All featured images have been licensed allowing for reproduction. The following images feature as sample images:

Litoria_tyleri

Schrecklicherpfeilgiftfrosch-01

Dendropsophus_microcephalus_-_calling_male_(Cope,_1886)

Atelopus_zeteki1

Related Articles and Feedback

Feedback and questions are always encouraged. If you know of an alternative implementation or have ideas on a more efficient implementation please share in the comments section.

I’ve published a number of articles related to imaging and images of which you can find URL links here:

C# How to: Image Abstract Colours Filter

Article Purpose

This article explores Abstract Colour Image filters as a process of Non-photo Realistic Image Rendering. The output produced reflects a variety of artistic effects.

Colour Values Red, Blue Filter Size 9
Edge Tracing Black Edge Threshold 55

Mushroom: Red - Blue, Filter Size 9, Edge Tracing Black, Edge Threshold 55

Sample Source Code

This article is accompanied by a sample source code Visual Studio project which is available for download .

Colour Values Blue Filter Size 9
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Blue, Filter Size 9, Color Shift Right, Edge Tracing Double Intensity, Edge Threshold 60

Using the Sample Application

The sample source code that accompanies this article includes a based sample application. The concepts discussed in this article have been illustrated through the implementation of the sample application.

When executing the sample application, through the user interface several options are made available to the user, described as follows:

  • Load/Save Source/input may be loaded from the local system through clicking the Load Image button. If desired by the user, resulting output can be saved to the local file system through clicking the Save Image button.
  • Colour Channels – The colour values Red, Green and Blue can be updated or remain unchanged when applying a filter, indicated through the associated .
  • Filter Size – The level of filter intensity depends on the size of the filter. Larger filter sizes result in more intense filtering being applied. Smaller filter size result in less intense filtering being applied.
  • Colour Shift Type – Colour intensity values can be swapped around through selecting the Colour Shift type: Shift Left and Shift Right.
  • Edge Tracing Type – When applying a filter the edges forming part of the original source/input will be expressed as part of the output . The method in which are indicated/highlighted will be determined through the type of Edge Tracing specified when applying the filter. Supported types of Edge Tracing include: Black, White, Half Intensity, Double Intensity and Inverted.
  • Edge Threshold – Edges forming part of the source/input are determines through means of implementing a threshold value. Lower threshold values result in more emphasized edges expressed within resulting . Higher threshold values reduce edge emphasis in resulting .

 

Colour Values Green Filter Size 9
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Green, Filter Size 9, Color Shift Left, Edge Tracing Double Intensity, Edge Threshold 60

Colour Values Red, Blue Filter Size 9
Edge Tracing Double Intensity Edge Threshold 55

Mushroom: Red - Blue, Filter Size 9, Color Shift Right, Edge Tracing Double Intensity, Edge Threshold 55

The following image is a screenshot of the Image Abstract Colour Filter sample application in action:

Image Abstract Colour Filter Sample Application

Abstracting Image Colours

The Abstract Colour Filter explored in this article can be considered a non-photo realistic filter. As the title implies, non-photo realistic filters transforms an input , usually a photograph, producing a result which visibly lacks the aspects of realism expressed in the input . In most scenarios the objective of non-photo realistic filters can be described as using photographic in rendering having an animated appearance.

Colour Values Blue Filter Size 11
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Blue, Filter Size 11, Color Shift Left, Edge Tracing Double Intensity, Edge Threshold 60

Colour Values Red Filter Size 11
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Red, Filter Size 11, Color Shift Left, Edge Tracing Double Intensity, Edge Threshold 60

The Abstract Colour Filter can be broken down into two main components: Colour Averaging and . Through implementing a variety of colour averaging algorithms resulting express abstract yet uniform colours. Abstract colours result in output no longer appearing photo realistic, instead output appear unconventionally augmented/artistic.

Output express a lesser degree of definition and detail, when compared to input . In some scenarios output might not be easily recognisable. In order to retain some detail, edge/boundary detail detected from input will be emphasised in result .

Colour Values Green Filter Size 11
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Green, Filter Size 11, Color Shift Left, Edge Tracing, Double Intensity, Edge Threshold 60

Colour Values Green, Blue Filter Size 11
Edge Tracing Double Intensity Edge Threshold 75

Mushroom: Green - Blue, Filter Size 11, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 75

The steps required when applying an Abstract Colour Filter can be described as follows:

  1. Perform – Using the source/input perform , producing a binary expressing in the foreground/as white.
  2. Calculate Neighbourhood Colour Averages – Iterate each forming part of the input , inspecting the ’s neighbouring . Calculate the sum total and average of each colour channel, Red, Green and Blue. The value of the currently being iterated should be set depending to neighbourhood average.
  3. Trace Edges within Colour Averages – Simultaneously iterate the colour average and the edge detected . If the being iterated forms part of an edge, update the corresponding in the average colour , depending on the specified method of Edge Tracing.

 

Colour Values Red, Green Filter Size 11
Edge Tracing Double Intensity Edge Threshold 75

Mushroom: Red - Green, Filter Size 11, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 75

Colour Values Red Filter Size 11
Edge Tracing Black Edge Threshold 60

Mushroom: Red, Filter Size 11, Color Shift Left, Edge Tracing Black, Edge Threshold 60

Implementing Pixel Neighbourhood Colour Averaging

In the sample source code neighbourhood colour averaging has been implemented through the definition of the AverageColoursFilter . This method creates a new using the source as input. The following code snippet provides the definition:

public static Bitmap AverageColoursFilter(this Bitmap sourceBitmap,  
                                          int matrixSize,   
                                          bool applyBlue = true, 
                                          bool applyGreen = true, 
                                          bool applyRed = true, 
                                          ColorShiftType shiftType = 
                                          ColorShiftType.None)  
{
    byte[] pixelBuffer = sourceBitmap.GetByteArray(); 
    byte[] resultBuffer = new byte[pixelBuffer.Length]; 

int calcOffset = 0; int byteOffset = 0; int blue = 0; int green = 0; int red = 0; int filterOffset = (matrixSize - 1) / 2;
for (int offsetY = filterOffset; offsetY < sourceBitmap.Height - filterOffset; offsetY++) { for (int offsetX = filterOffset; offsetX < sourceBitmap.Width - filterOffset; offsetX++) { byteOffset = offsetY * sourceBitmap.Width*4 + offsetX * 4;
blue = 0; green = 0; red = 0;
for (int filterY = -filterOffset; filterY <= filterOffset; filterY++) { for (int filterX = -filterOffset; filterX <= filterOffset; filterX++) { calcOffset = byteOffset + (filterX * 4) + (filterY * sourceBitmap.Width * 4);
blue += pixelBuffer[calcOffset]; green += pixelBuffer[calcOffset + 1]; red += pixelBuffer[calcOffset + 2]; } }
blue = blue / matrixSize; green = green / matrixSize; red = red / matrixSize;
if (applyBlue == false ) { blue = pixelBuffer[byteOffset]; }
if (applyGreen == false ) { green = pixelBuffer[byteOffset + 1]; }
if (applyRed == false ) { red = pixelBuffer[byteOffset + 2]; }
if (shiftType == ColorShiftType.None) { resultBuffer[byteOffset] = (byte)blue; resultBuffer[byteOffset + 1] = (byte)green; resultBuffer[byteOffset + 2] = (byte)red; resultBuffer[byteOffset + 3] = 255; } else if (shiftType == ColorShiftType.ShiftLeft) { resultBuffer[byteOffset] = (byte)green; resultBuffer[byteOffset + 1] = (byte)red; resultBuffer[byteOffset + 2] = (byte)blue; resultBuffer[byteOffset + 3] = 255; } else if (shiftType == ColorShiftType.ShiftRight) { resultBuffer[byteOffset] = (byte)red; resultBuffer[byteOffset + 1] = (byte)blue; resultBuffer[byteOffset + 2] = (byte)green; resultBuffer[byteOffset + 3] = 255; } } }
Bitmap resultBitmap = new Bitmap(sourceBitmap.Width, sourceBitmap.Height);
BitmapData resultData = resultBitmap.LockBits(new Rectangle (0, 0, resultBitmap.Width, resultBitmap.Height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb);
Marshal.Copy(resultBuffer, 0, resultData.Scan0, resultBuffer.Length);
resultBitmap.UnlockBits(resultData);
return resultBitmap; }
Colour Values Green, Blue Filter Size 17
Edge Tracing Black Edge Threshold 85

Mushroom: Green - Blue, Filter Size 17, Color Shift Left, Edge Tracing Black, Edge Threshold 85

Implementing Gradient Based Edge Detection

When applying an Abstract Colours Filter, one of the required steps involve . The sample source code implements   through the definition of the GradientBasedEdgeDetectionFilter method. This method has been defined as an targeting the class. The as follows:

public static Bitmap GradientBasedEdgeDetectionFilter( 
                        this Bitmap sourceBitmap, 
                        byte threshold = 0) 
{
    BitmapData sourceData = 
               sourceBitmap.LockBits(new Rectangle (0, 0, 
               sourceBitmap.Width, sourceBitmap.Height), 
               ImageLockMode.ReadOnly, 
               PixelFormat.Format32bppArgb); 

byte[] pixelBuffer = new byte[sourceData.Stride * sourceData.Height]; byte[] resultBuffer = new byte[sourceData.Stride * sourceData.Height];
Marshal.Copy(sourceData.Scan0, pixelBuffer, 0, pixelBuffer.Length); sourceBitmap.UnlockBits(sourceData);
int sourceOffset = 0, gradientValue = 0; bool exceedsThreshold = false;
for (int offsetY = 1; offsetY < sourceBitmap.Height - 1; offsetY++) { for (int offsetX = 1; offsetX < sourceBitmap.Width - 1; offsetX++) { sourceOffset = offsetY * sourceData.Stride + offsetX * 4; gradientValue = 0; exceedsThreshold = true;
// Horizontal Gradient CheckThreshold(pixelBuffer, sourceOffset - 4, sourceOffset + 4, ref gradientValue, threshold, 2); // Vertical Gradient exceedsThreshold = CheckThreshold(pixelBuffer, sourceOffset - sourceData.Stride, sourceOffset + sourceData.Stride, ref gradientValue, threshold, 2);
if (exceedsThreshold == false) { gradientValue = 0;
// Horizontal Gradient exceedsThreshold = CheckThreshold(pixelBuffer, sourceOffset - 4, sourceOffset + 4, ref gradientValue, threshold);
if (exceedsThreshold == false) { gradientValue = 0;
// Vertical Gradient exceedsThreshold = CheckThreshold(pixelBuffer, sourceOffset - sourceData.Stride, sourceOffset + sourceData.Stride, ref gradientValue, threshold);
if (exceedsThreshold == false) { gradientValue = 0;
// Diagonal Gradient : NW-SE CheckThreshold(pixelBuffer, sourceOffset - 4 - sourceData.Stride, sourceOffset + 4 + sourceData.Stride, ref gradientValue, threshold, 2); // Diagonal Gradient : NE-SW exceedsThreshold = CheckThreshold(pixelBuffer, sourceOffset - sourceData.Stride + 4, sourceOffset - 4 + sourceData.Stride, ref gradientValue, threshold, 2);
if (exceedsThreshold == false) { gradientValue = 0;
// Diagonal Gradient : NW-SE exceedsThreshold = CheckThreshold(pixelBuffer, sourceOffset - 4 - sourceData.Stride, sourceOffset + 4 + sourceData.Stride, ref gradientValue, threshold);
if (exceedsThreshold == false) { gradientValue = 0;
// Diagonal Gradient : NE-SW exceedsThreshold = CheckThreshold(pixelBuffer, sourceOffset - sourceData.Stride + 4, sourceOffset + sourceData.Stride - 4, ref gradientValue, threshold); } } } } }
resultBuffer[sourceOffset] = (byte)(exceedsThreshold ? 255 : 0); resultBuffer[sourceOffset + 1] = resultBuffer[sourceOffset]; resultBuffer[sourceOffset + 2] = resultBuffer[sourceOffset]; resultBuffer[sourceOffset + 3] = 255; } }
Bitmap resultBitmap = new Bitmap(sourceBitmap.Width, sourceBitmap.Height);
BitmapData resultData = resultBitmap.LockBits(new Rectangle (0, 0, resultBitmap.Width, resultBitmap.Height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb);
Marshal.Copy(resultBuffer, 0, resultData.Scan0, resultBuffer.Length); resultBitmap.UnlockBits(resultData);
return resultBitmap; }
Colour Values Red, Green Filter Size 5
Edge Tracing Black Edge Threshold 85

Mushroom: Red - Green - Blue, Filter Size 5, Color Shift Right, Edge Tracing Black, Edge Threshold 85

Implementing an Abstract Colour Filter

The AbstractColorsFilter method serves as means of combining an average colour and an edge detected . This targets the class. The following code snippet details the definition:

public static Bitmap AbstractColorsFilter(this Bitmap sourceBitmap, 
                                          int matrixSize, 
                                          byte edgeThreshold, 
                                          bool applyBlue = true, 
                                          bool applyGreen = true, 
                                          bool applyRed = true, 
                                          EdgeTracingType edgeType =  
                                          EdgeTracingType.Black, 
                                          ColorShiftType shiftType = 
                                          ColorShiftType.None) 
{ 
    Bitmap edgeBitmap =  
    sourceBitmap.GradientBasedEdgeDetectionFilter(edgeThreshold); 

Bitmap colorBitmap = sourceBitmap.AverageColoursFilter(matrixSize, applyBlue, applyGreen, applyRed, shiftType);
byte[] edgeBuffer = edgeBitmap.GetByteArray(); byte[] colorBuffer = colorBitmap.GetByteArray(); byte[] resultBuffer = colorBitmap.GetByteArray();
for (int k = 0; k + 4 < edgeBuffer.Length; k += 4) { if (edgeBuffer[k] == 255) { switch (edgeType) { case EdgeTracingType.Black: resultBuffer[k] = 0; resultBuffer[k+1] = 0; resultBuffer[k+2] = 0; break; case EdgeTracingType.White: resultBuffer[k] = 255; resultBuffer[k+1] = 255; resultBuffer[k+2] = 255; break; case EdgeTracingType.HalfIntensity: resultBuffer[k] = ClipByte(resultBuffer[k] * 0.5); resultBuffer[k + 1] = ClipByte(resultBuffer[k + 1] * 0.5); resultBuffer[k + 2] = ClipByte(resultBuffer[k + 2] * 0.5); break; case EdgeTracingType.DoubleIntensity: resultBuffer[k] = ClipByte(resultBuffer[k] * 2); resultBuffer[k + 1] = ClipByte(resultBuffer[k + 1] * 2); resultBuffer[k + 2] = ClipByte(resultBuffer[k + 2] * 2); break; case EdgeTracingType.ColorInversion: resultBuffer[k] = ClipByte(255 - resultBuffer[k]); resultBuffer[k+1] = ClipByte(255 - resultBuffer[k+1]); resultBuffer[k+2] = ClipByte(255 - resultBuffer[k+2]); break; } } }
Bitmap resultBitmap = new Bitmap (sourceBitmap.Width, sourceBitmap.Height);
BitmapData resultData = resultBitmap.LockBits(new Rectangle (0, 0, resultBitmap.Width, resultBitmap.Height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb);
Marshal.Copy(resultBuffer, 0, resultData.Scan0, resultBuffer.Length);
resultBitmap.UnlockBits(resultData);
return resultBitmap; }
Colour Values Red, Green Filter Size 17
Edge Tracing Double Intensity Edge Threshold 85

Mushroom: Red - Green, Filter Size 17, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 85

Sample Images

This article features a number of sample images. All featured images have been licensed allowing for reproduction. The following images feature as sample images:

1280px-Mycena_atkinsoniana_60804

1024px-Lactarius_indigo_48568

Amanita_muscaria_(fly_agaric)

683px-Pleurotus_pulmonarius_LC0228

Additional Filter Result Images

The following series of images represent additional filter results.

Colour Values Red Filter Size 9
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Red, Filter Size 9, Color Shift Right, Edge Tracing Double, Edge Threshold 60

Colour Values Green, Blue Filter Size 9
Edge Tracing Double Intensity Edge Threshold 60

Mushroom: Green - Blue, Filter Size 9, Color Shift Right, Edge Tracing Double Intensity, Edge Threshold 60

Colour Values Green, Blue Filter Size 9
Edge Tracing Black Edge Threshold 60

Mushroom: Green - Blue, Filter Size 9, Color Shift Left, Edge Tracing Black, Edge Threshold 60

Colour Values Red, Green, Blue Filter Size 9
Edge Tracing Double Intensity Edge Threshold 55

Mushroom: Red - Green - Blue, Filter Size 9, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 55

Colour Values Red, Green, Blue Filter Size 11
Edge Tracing Black Edge Threshold 75

Mushroom: Red - Green - Blue, Filter Size 11, Color Shift None, Edge Tracing Black, Edge Threshold 75

Colour Values Red, Blue Filter Size 11
Edge Tracing Double Intensity Edge Threshold 75

Mushroom: Red - Blue, Filter Size 11, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 75

Colour Values Green Filter Size 17
Edge Tracing Black Edge Threshold 85

Mushroom: Green, Filter Size 17, Color Shift None, Edge Tracing Black, Edge Threshold 85

Colour Values Red Filter Size 17
Edge Tracing Black Edge Threshold 85

Mushroom: Red, Filter Size 17, Color Shift None, Edge Tracing Black, Edge Threshold 85

Colour Values Red, Green, Blue Filter Size 5
Edge Tracing Half Edge Edge Threshold 85

Mushroom: Red - Green - Blue, Filter Size 5, Color Shift None, Edge Tracing Half Edge, Threshold 85

Colour Values Blue Filter Size 5
Edge Tracing Double Intensity Edge Threshold 75

Mushroom: Blue, FilterSize 5, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 75

Colour Values Green Filter Size 5
Edge Tracing Double Intensity Edge Threshold 75

Mushroom: Green, Filter Size 5, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 75

Colour Values Red Filter Size 5
Edge Tracing Double Intensity Edge Threshold 75

Mushroom: Red, Filter Size 5, Color Shift None, Edge Tracing Double Intensity, Edge Threshold 75

Colour Values Red, Green, Blue Filter Size 5
Edge Tracing Black Edge Threshold 75

Mushroom: Red - Green - Blue, Filter Size 3, Color Shift Left, Edge Tracing Black, Edge Threshold 75

Colour Values Red, Green, Blue Filter Size 9
Edge Tracing Black Edge Threshold 55

Mushroom: Red - Green - Blue, Filter Size 3, Color Shift None, Edge Tracing Black, Edge Threshold 75

Colour Values Red, Green, Blue Filter Size 3
Edge Tracing Black Edge Threshold 75

Mushroom: Red - Green - Blue, Filter Size 3, Color Shift Right, Edge Tracing Black, Edge Threshold 75

Related Articles and Feedback

Feedback and questions are always encouraged. If you know of an alternative implementation or have ideas on a more efficient implementation please share in the comments section.

I’ve published a number of articles related to imaging and images of which you can find URL links here:


Dewald Esterhuizen

Blog Stats

  • 449,379 hits

Enter your email address to follow and receive notifications of new posts by email.

Join 205 other followers

Archives

Twitter feed


%d bloggers like this: