Archive for the 'XML Serialization' Category

C# How to: Blending Bitmap images using colour filters

Article purpose

In this we explore how to combine or blend two by implementing various colour filters affecting how an appear as part of the resulting blended . The concepts detailed in this are reinforced and easily reproduced by making use of the sample source code that accompanies this .

Sample source code

This is accompanied by a sample source code Visual Studio project which is available for download .

Using the sample Application

The provided sample source code builds a which can be used to blend two separate files read from the file system. The methods employed when applying blending operations on two can be adjusted to a fine degree when using the sample application. In addition the sample application provides the functionality allowing the user to save the resulting blended and also being able to save the exact colour filters/algorithms that were applied. Filters created and saved previously can be loaded from the file system allowing users to apply the exact same filtering without having to reconfigure filtering as exposed through the application front end.

Here is a screenshot of the sample application in action:

Blending Bitmap images using colour filters

This scenario blends an of an airplane with an of a pathway in a forest. As a result of the colour filtering implemented when blending the two the output appears to provide somewhat equal elements of both , without expressing all the elements of the original .

What is Colour Filtering?

In general terms making reference to a filter would imply some or other mechanism being capable of sorting or providing selective inclusion/exclusion. There is a vast number of filter algorithms in existence, each applying some form of logic in order to achieve a desired outcome.

In C# implementing colour filter algorithms targeting have the ability to modify or manipulate the colour values expressed by an . The extent to which colour values change as well as the level of detail implemented  is determined by the algorithms/calculations performed when a filter operation becomes active.

An can be thought of as being similar to a two dimensional array with each array element representing the data required to be expressed as an individual pixel. Two dimensional arrays are similar to the concept of a grid defined by rows and columns. The “rows” of pixels represented by an are required to all be of equal length. When thinking in terms of a two dimensional array or grid analogy its likely to make sense that the number of rows and columns in fact translate to an ’s width and height.

An ’s colour data can be expressed beyond rows and columns of pixels. Each pixel contained in an defines a colour value. In this we focus on 32bit of type ARGB.

Image Bit Depth and Pixel Colour components

bit depth is also referred to as the number of bits per pixel. Bits per pixel (Bpp) is an indicator of the amount of storage space required to store an image. A bit value is smallest unit of storage available in a storage medium, it can simply be referred to as being either a value of 1 or 0.

In C# natively the smallest unit of storage expressed comes in the form of the integral type. A value occupies 8 bits of storage, it is not possible in C# to express a value as a bit. The .net framework provides functionality enabling developers to develop in the concept of bit values, which in reality occupies far more than 1 bit of memory when implemented.

If we consider as an example an formatted as 32 bits per pixel, as the name implies, for each pixel contained in an 32 bits of additional storage is required. Knowing that a represents 8 bits logic dictates that 32 bits are equal to four , determined by dividing 32 bits by 8. as 32 bits per pixel therefore can be considered as being encoded as 4 per pixel images. 32 Bpp require 4 to express a single pixel.

The data represented by a pixel’s bytes

32 Bpp equating to 4 per pixel, each in turn representing a colour component, together being capable of expressing a single colour representing the underlying pixel. When an format is referred to as 32 Bpp Argb the four colour components contained in each pixel are: Red, Green, Blue and the Alpha component.

An Alpha component is in indication of a particular pixel’s transparency. Each colour component is represented by a value. The possible value range in terms of stretch from 0 to 255, inclusive, therefore a colour component can only contain a value within this range. A colour value is in fact a representation of that colour’s intensity associated with a single image pixel. A value of 0 indicating the highest possible intensity and 255 reflecting no intensity at all. When the Alpha component is set to a value of 255 it is an expression of no transparency. In the  same fashion when an Alpha component equates to 0 the associated pixel is considered completely transparent, thus negating whatever colour values are expressed by the remaining colour components.

Take note that not all support transparency, almost similar to how certain can only represent grayscale or just black and white pixels. An expressed only in terms of Red, Blue and Green colour values, containing no Alpha component can be implemented as a 24 Bit RGB . Each pixel’s storage requirement being 24 bits or 3 bytes, representing colour intensity values for Red, Green and Blue, each limited to a value ranging from 0 to 255.

Manipulating a Pixel’s individual colour components

In C# it is possible to manipulate the value of a pixel’s individual colour components. Updating the value expressed by a colour component will most likely result in the colour value expressed by the pixel as a whole to also change. The resulting change affects the colour component’s intensity. As an example, if you were to double the value of the Blue colour component the result will most likely be that the associated pixel will represent a colour having twice the intensity of Blue when compared to the previous value.

When you manipulate colour components you are in affect applying a colour filter to the underlying . Iterating the values and performing updates based on a calculation or a conditional check qualifies as an algorithm, an /colour filter in other words.

Retrieving Image Colour components as an array of bytes

As a result of the .net Framework’s memory handling infrastructure and the implementation of the it is a likely possibility that the memory address assigned to a variable when instantiated could change during the variable’s lifetime and scope, not necessarily reflecting the same address in memory when going out of scope. It is the responsibility of the to ensure updating a variable’s memory reference when an operation performed by the results in values kept in memory moving to a new address in memory.

When accessing an ’s underlying data expressed as a array we require a mechanism to signal the that an additional memory reference exist, which might not be updated when values shift in memory  to a new address.

The class provides the method, when invoked the values representing pixel data will not be moved in memory by the until the values are unlocked by invoking the method also defined by the class.

The method defines a return value of type , which contains data related to the lock operation. When invoking the method you are required to pass the object returned when you invoked .

The method provides an overridden implementation allowing the calling code to specify only a certain part of a to lock in memory, expressed as

The sample code that accompanies this updates the entire and therefore specifies the portion to lock as a equal in size to the whole .

The class defines the property of type . contains the address in memory of the ’s first pixel, in other words the starting point of a ’s underlying data.

Creating an algorithm to Filter Bitmap Colour components

The sample code is implemented to blend two , considering one as as source or base canvas and the second as an overlay . The algorithm used to implement a blending operation is defined as a class exposing public properties which affect how blending is achieved.

The source code that implements the algorithm functions by creating an object instance of BitmapFilterData class and setting the associated public properties to certain values, as specified by the user through the user interface at runtime. The BitmapFilterData class can thus be considered to qualify as a dynamic algorithm. The following source code contains the definition of the BitmapFilterData class.

[Serializable]
public class BitmapFilterData
{
    private bool sourceBlueEnabled = false;
    public bool SourceBlueEnabled { get { return sourceBlueEnabled; }set { sourceBlueEnabled = value; } }

private bool sourceGreenEnabled = false; public bool SourceGreenEnabled { get { return sourceGreenEnabled; }set { sourceGreenEnabled = value; } }
private bool sourceRedEnabled = false; public bool SourceRedEnabled { get { return sourceRedEnabled; } set { sourceRedEnabled = value; } }
private bool overlayBlueEnabled = false; public bool OverlayBlueEnabled { get { return overlayBlueEnabled; } set { overlayBlueEnabled = value; } }
private bool overlayGreenEnabled = false; public bool OverlayGreenEnabled { get { return overlayGreenEnabled; } set { overlayGreenEnabled = value; } }
private bool overlayRedEnabled = false; public bool OverlayRedEnabled { get { return overlayRedEnabled; }set { overlayRedEnabled = value; } }
private float sourceBlueLevel = 1.0f; public float SourceBlueLevel { get { return sourceBlueLevel; } set { sourceBlueLevel = value; } }
private float sourceGreenLevel = 1.0f; public float SourceGreenLevel { get { return sourceGreenLevel; } set { sourceGreenLevel = value; } }
private float sourceRedLevel = 1.0f; public float SourceRedLevel {get { return sourceRedLevel; } set { sourceRedLevel = value; } }
private float overlayBlueLevel = 0.0f; public float OverlayBlueLevel { get { return overlayBlueLevel; } set { overlayBlueLevel = value; } }
private float overlayGreenLevel = 0.0f; public float OverlayGreenLevel { get { return overlayGreenLevel; } set { overlayGreenLevel = value; } }
private float overlayRedLevel = 0.0f; public float OverlayRedLevel { get { return overlayRedLevel; } set { overlayRedLevel = value; } }
private ColorComponentBlendType blendTypeBlue = ColorComponentBlendType.Add; public ColorComponentBlendType BlendTypeBlue { get { return blendTypeBlue; }set { blendTypeBlue = value; } }
private ColorComponentBlendType blendTypeGreen = ColorComponentBlendType.Add; public ColorComponentBlendType BlendTypeGreen { get { return blendTypeGreen; } set { blendTypeGreen = value; } }
private ColorComponentBlendType blendTypeRed = ColorComponentBlendType.Add; public ColorComponentBlendType BlendTypeRed { get { return blendTypeRed; } set { blendTypeRed = value; } }
public static string XmlSerialize(BitmapFilterData filterData) { XmlSerializer xmlSerializer = new XmlSerializer(typeof(BitmapFilterData));
XmlWriterSettings xmlSettings = new XmlWriterSettings(); xmlSettings.Encoding = Encoding.UTF8; xmlSettings.Indent = true;
MemoryStream memoryStream = new MemoryStream(); XmlWriter xmlWriter = XmlWriter.Create(memoryStream, xmlSettings);
xmlSerializer.Serialize(xmlWriter, filterData); xmlWriter.Flush();
string xmlString = xmlSettings.Encoding.GetString(memoryStream.ToArray());
xmlWriter.Close(); memoryStream.Close(); memoryStream.Dispose();
return xmlString; }
public static BitmapFilterData XmlDeserialize(string xmlString) { XmlSerializer xmlSerializer = new XmlSerializer(typeof(BitmapFilterData)); MemoryStream memoryStream = new MemoryStream(Encoding.UTF8.GetBytes(xmlString));
XmlReader xmlReader = XmlReader.Create(memoryStream);
BitmapFilterData filterData = null;
if(xmlSerializer.CanDeserialize(xmlReader) == true) { xmlReader.Close(); memoryStream.Position = 0;
filterData = (BitmapFilterData)xmlSerializer.Deserialize(memoryStream); }
memoryStream.Close(); memoryStream.Dispose();
return filterData; } }
public enum ColorComponentBlendType { Add, Subtract, Average, DescendingOrder, AscendingOrder }

The BitmapFilterData class define 6 public properties relating to whether a colour component should be included in calculating the specific component’s new value. The properties are:

  • SourceBlueEnabled
  • SourceGreenEnabled
  • SourceRedEnabled
  • OverlayBlueEnabled
  • OverlayGreenEnabled
  • OverlayRedEnabled

In addition a further 6 related public properties are defined which dictate a factor by which to apply a colour component as input towards the value of the resulting colour component. The properties are:

  • SourceBlueLevel
  • SourceGreenLevel
  • SourceRedLevel
  • OverlayBlueLevel
  • OverlayGreenLevel
  • OverlayRedLevel

Only if a colour component’s related Enabled property is set to true will the associated Level property be applicable when calculating the new value of the colour component.

The BitmapFilterData class next defines 3 public properties of type ColorComponentBlendType. This ’s value determines the calculation performed between source and overlay colour components. Only after each colour component has been modified by applying the associated Level property factor will the calculation defined by the ColorComponentBlendType value be performed.

Source and Overlay colour components can be Added together, Subtracted, Averaged, Discard Larger value or Discard Smaller value. The 3 public properties that define the calculation type to be performed are:

  • BlendTypeBlue
  • BlendTypeGreen
  • BlendTypeRed

Notice the two public method defined by the BitmapFilterData class, XmlSerialize and XmlDeserialize. These two methods enables the calling code to Xml serialize a BitmapFilterData object to a string variable containing the object’s Xml representation, or to create an object instance based on an Xml representation.

The sample application implements Xml serialization and deserialization when saving a BitmapFilterData object to the file system and when creating a BitmapFilterData object previously saved on the file system.

Bitmap Blending Implemented as an extension method

The sample source code provides the definition for the BlendImage method, an targeting the class. This method creates a new memory , of which the colour values are calculated from a source and an overlay as defined by a BitmapFilterData object instance parameter. The source code listing for the BlendImage method:

public static Bitmap BlendImage(this Bitmap baseImage, Bitmap overlayImage, BitmapFilterData filterData)
{
    BitmapData baseImageData = baseImage.LockBits(new Rectangle(0, 0, baseImage.Width, baseImage.Height),
      System.Drawing.Imaging.ImageLockMode.ReadWrite, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
    byte[] baseImageBuffer = new byte[baseImageData.Stride * baseImageData.Height];

Marshal.Copy(baseImageData.Scan0, baseImageBuffer, 0, baseImageBuffer.Length);
BitmapData overlayImageData = overlayImage.LockBits(new Rectangle(0, 0, overlayImage.Width, overlayImage.Height),
                   System.Drawing.Imaging.ImageLockMode.ReadOnly, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
    byte[] overlayImageBuffer = new byte[overlayImageData.Stride * overlayImageData.Height];

Marshal.Copy(overlayImageData.Scan0, overlayImageBuffer, 0, overlayImageBuffer.Length);
float sourceBlue = 0; float sourceGreen = 0; float sourceRed = 0;
float overlayBlue = 0; float overlayGreen = 0; float overlayRed = 0;
for (int k = 0; k < baseImageBuffer.Length && k < overlayImageBuffer.Length; k += 4) { sourceBlue = (filterData.SourceBlueEnabled ? baseImageBuffer[k] * filterData.SourceBlueLevel : 0); sourceGreen = (filterData.SourceGreenEnabled ? baseImageBuffer[k+1] * filterData.SourceGreenLevel : 0); sourceRed = (filterData.SourceRedEnabled ? baseImageBuffer[k+2] * filterData.SourceRedLevel : 0);
overlayBlue = (filterData.OverlayBlueEnabled ? overlayImageBuffer[k] * filterData.OverlayBlueLevel : 0); overlayGreen = (filterData.OverlayGreenEnabled ? overlayImageBuffer[k + 1] * filterData.OverlayGreenLevel : 0); overlayRed = (filterData.OverlayRedEnabled ? overlayImageBuffer[k + 2] * filterData.OverlayRedLevel : 0);
baseImageBuffer[k] = CalculateColorComponentBlendValue(sourceBlue, overlayBlue, filterData.BlendTypeBlue); baseImageBuffer[k + 1] = CalculateColorComponentBlendValue(sourceGreen, overlayGreen, filterData.BlendTypeGreen); baseImageBuffer[k + 2] = CalculateColorComponentBlendValue(sourceRed, overlayRed, filterData.BlendTypeRed); }
Bitmap bitmapResult = new Bitmap(baseImage.Width, baseImage.Height, PixelFormat.Format32bppArgb); BitmapData resultImageData = bitmapResult.LockBits(new Rectangle(0, 0, bitmapResult.Width, bitmapResult.Height),
                 System.Drawing.Imaging.ImageLockMode.WriteOnly, System.Drawing.Imaging.PixelFormat.Format32bppArgb);

Marshal.Copy(baseImageBuffer, 0, resultImageData.Scan0, baseImageBuffer.Length);
bitmapResult.UnlockBits(resultImageData); baseImage.UnlockBits(baseImageData); overlayImage.UnlockBits(overlayImageData);
return bitmapResult; }

The BlendImage method starts off by creating 2 arrays, intended to contain the source and overlay ’s pixel data, expressed in 32 Bits per pixel Argb . As discussed earlier, both ’s data are locked in memory by invoking the method.

Before copying values we first need to declare a array to copy to. The size in of a ’s raw data can be determined by multiplying and  . We obtained an instance of the class when we invoked . The associated object contains data about the lock operation, hence it needs to be supplied as a parameter when unlocking the bits when invoking .

The property refers to the ’s scan width. The property can also be described as the total number of colour components found within one row of pixels from a . Note that the property is rounded up to a four boundary. We can make the deduction that the property modulus 4 would always equal 0. The source code multiplies the property and the property.  Also known as the number of scan lines, the property is equal to the ’s height in pixels from which the object was derived.

Multiplying and   can be considered the same as multiplying an ’s bit depth, Width and also Height.

Once the two arrays have been obtained from the source and overlay the sample source iterates both arrays simultaneously. Notice how the code iterates through the arrays, the for loop increment statement being incremented by a value of 4 each time the loop executes. The for loop executes in terms of pixel values, remember that one pixel consists of 4 /colour components when the has been encoded as a 32Bit Argb .

Within the for loop the code firstly calculates a value for each colour component, except the Alpha  component. The calculation is based on the values defined by the BitmapFilterData object.

Did you notice that the source code assigns colour components in the order of Blue, Green, Red? An easy oversight when it comes to manipulating Bitmaps comes in the form of not remembering the correct order of colour components. The pixel format is referred to as 32bppArgb, in fact most references state Argb being Alpha, Red, Green and Blue.  The colour components representing a pixel are in fact ordered Blue, Green, Red and Alpha, the exact opposite to most naming conventions. Since the for loop’s increment statement increments by four with each loop we can access the Green, Red and Alpha components by adding the values 1, 2 or 3 to the loop’s index component, in this case defined as the variable k. Remember the colour component ordering, it can make for some interesting unintended consequences/features.

If a colour component is set to disabled in the BitmapFilterData object the new colour component will be set to a value of 0. Whilst iterating the arrays a set of calculations are also performed as defined by each colour component’s associated ColorComponentBlendType, defined by the BitmapFilterData object. The calculations are implemented by invoking the CalculateColorComponentBlendValue method.

Once all calculations are completed a new object is created to which the updated pixel data is copied only after the newly created has been locked in memory. Before returning the which now contains the blended colour component values all are unlocked in memory.

Calculating Colour component Blend Values

The CalculateColorComponentBlendValue method is implemented to calculate blend values as follows:

private static byte CalculateColorComponentBlendValue(float source, float overlay, ColorComponentBlendType blendType)
{
    float resultValue = 0;
    byte resultByte = 0;

if (blendType == ColorComponentBlendType.Add) { resultValue = source + overlay; } else if (blendType == ColorComponentBlendType.Subtract) { resultValue = source - overlay; } else if (blendType == ColorComponentBlendType.Average) { resultValue = (source + overlay) / 2.0f; else if (blendType == ColorComponentBlendType.AscendingOrder) { resultValue = (source > overlay ? overlay : source); } else if (blendType == ColorComponentBlendType.DescendingOrder) { resultValue = (source < overlay ? overlay : source); }
if (resultValue > 255) { resultByte = 255; } else if (resultValue < 0) { resultByte = 0; } else { resultByte = (byte)resultValue; }
return resultByte; }

Different sets of calculations are performed  for each colour component based on the Blend type specified by the BitmapFilterData object. It is important to note that before the method returns a result a check is performed ensuring the new colour component’s value falls within the valid range of values, 0 to 255. Should a value exceed 255 that value will be assigned to 255, also if a value is negative that value will be assigned to 0.

The implementation – A Windows Forms Application

The accompanying source code defines a . The ImageBlending application enables a user to specify the source and overlay input , both of which are displayed in a scaled size on the left-hand side of the . On the right-hand side of the users are presented with various controls that can be used to adjust the current colour filtering algorithm.

The following screenshot shows the user specified input source and overlay :

Blending Bitmap images using colour filters

The next screenshot details the controls available which can be used to modify the colour filtering algorithm being applied:

Blending Bitmap images using colour filters

Notice the checkboxes labelled Blue, Green and Red, the check state determines whether the associated colour component’s value will be used in calculations. The six trackbar controls shown above can be used to set the exact factoring value applied to the associated colour component when implementing the colour filter. Lastly towards the bottom of the screen the three comboboxes provided indicate the ColorComponentBlendType value implemented in the colour filter calculations.

The blended output implementing the specified colour filter is located towards the middle of the . Remember in the screenshot shown above, the input being of a beach scene and the overlay being a rock concert at night. The degree and intensity towards how colours from both feature in the output is determined by the colour filter, as defined earlier through the user interface.

Blending Bitmap images using colour filters

Towards the bottom of this part of the screen two buttons can be seen, labelled “Save Filter” and “Load Filter”. When a user creates a filter the filter values can be persisted to the file system by clicking Save Filter and specifying a file path. To implement a colour filter created and saved earlier users can click the Load Filter button and file browse to the correct file.

For the sake of clarity the screenshot featured below captures the entire application front end. The previous images consist of parts taken from this image:

Blending Bitmap images using colour filters

The trackbar controls provided by the user interface enables a user to quickly and effortlessly test a colour filter. The ImageBlend application has been implemented to provide instant feedback/processing based on user input. Changing any of the colour filter values exposed by the user interface results in the colour filter being applied instantly.

Loading a Source Image

When the user clicks on the Load button associated with source a standard Open File Dialog displays prompting the user to select a source file. Once a source file has been selected the ImageBlend application creates a memory from the file system . The method in which colour filtering is implemented requires that input files have a bit depth of 32 bits and is formatted as an Argb . If a user attempts to specify an that is not in a 32bppArgb format the source code will attempt to convert the input image to the correct format by making use of LoadArgbBitmap .

Converting to the 32BppArgb format

The sample source code defines the LoadArgbBitmap targeting the string class. In addition to converting , this method can also be implemented to resize provided . The LoadArgbBitmap method is invoked when a user specifies a source and also when specifying an overlay . In order to provide better colour filtering source and overlay are required to be the same size. Source are never resized, only overlay images are resized to match the size dimensions of the specified source . The following code snippet provides the implementation of the LoadArgbBitmap method:

public  static  Bitmap  LoadArgbBitmap(this  string  filePath, Size? imageDimensions = null )
{
    StreamReader streamReader = new  StreamReader(filePath);
    Bitmap  fileBmp = (Bitmap)Bitmap.FromStream(streamReader.BaseStream);
    streamReader.Close();

int width = fileBmp.Width; int height = fileBmp.Height;
if(imageDimensions != null) { width = imageDimensions.Value.Width; height = imageDimensions.Value.Height; }
if(fileBmp.PixelFormat != PixelFormat.Format32bppArgb || fileBmp.Width != width || fileBmp.Height != height) { fileBmp = GetArgbCopy(fileBmp, width, height); }
return fileBmp; }

are only resized if the required size is known and if an is not already the same size specified as the required size. A scenario where the required size might not yet be known can occur when the user first selects an overlay with no source specified yet. Whenever the source changes the overlay is recreated from the file system and resized if needed.

If the specified does not conform to a 32bppArgb the LoadArgbBitmap invokes the GetArgbCopy method, which is defined as follows:

private static Bitmap GetArgbCopy(Bitmap sourceImage, int width, int height)
{
    Bitmap bmpNew = new Bitmap(width, height, PixelFormat.Format32bppArgb);

using (Graphics graphics = Graphics.FromImage(bmpNew)) { graphics.CompositingQuality = System.Drawing.Drawing2D.CompositingQuality.HighQuality; graphics.InterpolationMode = System.Drawing.Drawing2D.InterpolationMode.HighQualityBilinear; graphics.PixelOffsetMode = System.Drawing.Drawing2D.PixelOffsetMode.HighQuality; graphics.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality; graphics.DrawImage(sourceImage, new Rectangle(0, 0, bmpNew.Width, bmpNew.Height), new Rectangle(0, 0, sourceImage.Width, sourceImage.Height), GraphicsUnit.Pixel); graphics.Flush(); }
return bmpNew; }

The GetArgbCopy method implements GDI drawing using the class in order to resize an .

Bitmap Blending examples

RHCP1

RHCP5

DayNightBlend

In the example above two photos were taken from the same location. The first photo was taken in the late afternoon, the second once it was dark. The resulting blended appears to show the time of day being closer to sundown than in the first photo. The darker colours from the second photo are mostly excluded by the filter, lighter elements such as the stage lighting appear pronounced as a yellow tint in the output .

The filter values specified are listed below as Xml. To reproduce the filter you can copy the Xml markup and save to disk specifying the file extension *.xbmp.

<?xml version="1.0" encoding="utf-8"?>
<BitmapFilterData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <SourceBlueEnabled>true</SourceBlueEnabled>
  <SourceGreenEnabled>true</SourceGreenEnabled>
  <SourceRedEnabled>true</SourceRedEnabled>
  <OverlayBlueEnabled>true</OverlayBlueEnabled>
  <OverlayGreenEnabled>true</OverlayGreenEnabled>
  <OverlayRedEnabled>true</OverlayRedEnabled>
  <SourceBlueLevel>0.5</SourceBlueLevel>
  <SourceGreenLevel>0.3</SourceGreenLevel>
  <SourceRedLevel>0.2</SourceRedLevel>
  <OverlayBlueLevel>0.75</OverlayBlueLevel>
  <OverlayGreenLevel>0.5</OverlayGreenLevel>
  <OverlayRedLevel>0.6</OverlayRedLevel>
  <BlendTypeBlue>Subtract</BlendTypeBlue>
  <BlendTypeGreen>Add</BlendTypeGreen>
  <BlendTypeRed>Add</BlendTypeRed>
</BitmapFilterData>

Blending two night time :

RHCP5

RHCP6

NightTimePhotoBlend

Fun Fact: In this some of the photos featured were taken at a live concert of The Red Hot Chilli Peppers, performing at Soccer City, Johannesburg, South Africa.

Related Articles

C# How to: Decoding/Converting Base64 strings to Bitmap images

Article purpose

This details how to decode or convert encoded back into by means of the class.

Note: This article is an update that builds upon the article:

Sample source code

This is accompanied by a sample source code Visual Studio project which is available for download .

Images as Base64 strings

From :

Base64 is a group of similar encoding schemes that represent in an ASCII string format by translating it into a -64 representation. The Base64 term originates from a specific .

Base64 encoding schemes are commonly used when there is a need to encode binary data that need to be stored and transferred over media that are designed to deal with textual data. This is to ensure that the data remain intact without modification during transport. Base64 is commonly used in a number of applications including email via MIME, and storing complex data in XML.

From the definition quoted above the need for encoding becomes more clear. From :

The base-64 digits in ascending order from zero are the uppercase characters "A" to "Z", the lowercase characters "a" to "z", the numerals "0" to "9", and the symbols "+" and "/". The valueless character, "=", is used for trailing padding.

encoding allows developers to expose without potentially encountering conflicts in regards to the transfer medium. encoded serves ideally when performing data transfer operations using platforms such as html, json, rest, xml, email.

A common implementation of encoding can be found when transferring data. This details how to convert/decode a back into a Bitmap .

Base64 String to Bitmap decoding implemented as an extension method

The code snippet listed below details the Base64StringToBitmap targeting the .

public static Bitmap Base64StringToBitmap(this string
                                           base64String)
{
    Bitmap bmpReturn = null;

byte[] byteBuffer = Convert.FromBase64String(base64String); MemoryStream memoryStream = new MemoryStream(byteBuffer);
memoryStream.Position = 0;
bmpReturn = (Bitmap)Bitmap.FromStream(memoryStream);
memoryStream.Close(); memoryStream = null; byteBuffer = null;
return bmpReturn; }

The parameter is first converted to a array by invoking the method. Next we create a against the resulting array, which serves as a parameter to the class’ static method.

The implementation

The Base64StringToBitmap is implemented in a console based application. The creates a instance from the local file system, which is then converted to a .

An article detailing how to convert to encoded can be found here:

– The you are currently reading was published as a follow up .

Next the newly created is converted back to a by invoking the Base64StringToBitmap . In order to test if the was decoded successfully the is saved to the local file system and displayed in the default installed application associated with png . The implementation as follows:

static void Main(string[] args)
{
    StreamReader streamReader = new StreamReader(
                                   "NavForward.png");

Bitmap bmp = new Bitmap(streamReader.BaseStream); streamReader.Close();
string base64ImageString = bmp.ToBase64String( ImageFormat.Png);
Console.WriteLine(base64ImageString);
Bitmap bmpFromString = base64ImageString.Base64StringToBitmap();
bmpFromString.Save("FromBase64String.png", ImageFormat.Png);
Process.Start("FromBase64String.png");
Console.ReadKey(); }

Related Articles and Feedback

Feedback and questions are always encouraged. If you know of an alternative implementation or have ideas on a more efficient implementation please share in the comments section.

Dewald Esterhuizen

I’ve published a number of articles related to imaging and images of which you can find URL links here:

C# How to: Deep copy objects using NetDataContractSerializer

Article purpose

This article will illustrate how to create deep copies of an by making use of the implemented in the form of an extension method with generic type support.

Sample source code

This article is accompanied by a sample source code Visual Studio project which is available for download .

Shallow Copy and Deep Copy

When creating a copy of an in memory, the type of copy can be described as either a shallow copy or a deep copy. The class defines the method, which performs a bit by bit copy of an ’s value type members. In the case of reference type members the method will create a copy of the reference, but not a copy of the being referenced. Creating a copy of an using the method will thus result in copies and the original still referencing the same member in memory when that is a reference type. The method performs a shallow copy when invoked.

A deep copy of an results in copies and the original not referencing the same reference type member in memory.

This article is a follow up article on: . When using being have to be decorated with any number of attributes which aid and . An object’s definition has to at the very least specify the Serializable attribute, if not attempting results in a runtime exception.

The advantage of implementing deep copy operations by making use of a can be argued around not having to specify . Although, as is the case with , only objects that define a can be without specifying any additional attributes.

Example custom data type

The code snippet listed below illustrates several user/custom defined data types. Notice the complete absence of any code attributes, as usually required for successful serialization/deserialization. Also pay attention to the private member variables, being an and user defined reference type defined towards the end of this snippet.

For the sake of convenience I overload the , returning a string representation of an object’s member values.

public class CustomDataType 
{ 
     private CustomEnum enumMember = CustomEnum.EnumVal1; 
     private ExampleReferenceType referenceType = new ExampleReferenceType(); 

public void RefreshReferenceType() { referenceType.Refresh(); }
private int intMember = 0; public int IntMember { get { return intMember; } set { intMember = value; } }
private string stringMember = String.Empty; public string StringMember { get { return stringMember; } set { stringMember = value; } }
private DateTime dateTimeMember = DateTime.MinValue; public DateTime DateTimeMember { get { return dateTimeMember; } set { dateTimeMember = value; } }
public override string ToString() { return "IntMember: " + IntMember + ", DateTimeMember: " + DateTimeMember.ToString() + ", StringMember: " + stringMember + ", EnumMember: " + enumMember.ToString() + ", ReferenceType: " + referenceType.ToString(); }
public void SetEnumValue(CustomEnum enumValue) { enumMember = enumValue; } }
public class ExampleReferenceType { private DateTime createdDate = DateTime.Now;
public void Refresh() { createdDate = DateTime.Now; }
public override string ToString() { return createdDate.ToString("HH:mm:ss.fff"); } }
public enum CustomEnum { EnumVal1 = 2, EnumVal2 = 4, EnumVal3 = 8, EnumVal4 = 16, }

The DeepCopy method – Implementation as an extension method with generic type support

Extension method architecture enables developers to create methods which, from a syntactic and implementation point of view appear to be part of an existing data type. create the perception of being updates or additions, literarily extending a data type as the name implies. do not require access to the source code of the particular types being extended, nor does the implementation thereof require recompilation of the referenced types.

This article illustrates a combined implementation of extending the functionality of . The following code snippet provides the definition.

public static class ExtObject 
{ 
    public static T DeepCopy<T>(this T objectToCopy) 
    {    
        MemoryStream memoryStream = new MemoryStream(); 

NetDataContractSerializer netFormatter = new NetDataContractSerializer();
netFormatter.Serialize(memoryStream, objectToCopy);
memoryStream.Position = 0; T returnValue = (T)netFormatter.Deserialize(memoryStream);
memoryStream.Close(); memoryStream.Dispose();
return returnValue; } }

The DeepCopy method is defined as an by virtue of being a static method of a static class and by specifying the keyword in its parameter definition.

DeepCopy additionally defines the <T> which determines the return value’s type and the type of the parameter objectToCopy.

The method body creates an instance of a object and an object instance of type . When the is invoked the Xml representation of the objectToCopy parameter is written to the specified . In a similar fashion is invoked next, reading the Xml representation from the specified . The returned is cast to the same type as the originally .

Note: :

Serializes and deserializes an instance of a type into XML stream or document using the supplied .NET Framework types.

The NetDataContractSerializer differs from the in one important way: the NetDataContractSerializer includes CLR type information in the serialized XML, whereas the does not. Therefore, the NetDataContractSerializer can be used only if both the serializing and deserializing ends share the same CLR types.

In the scenario illustrated it can be considered safe to use since objects being are only persisted to memory for a few milliseconds and then back to an instance.

The implementation

The DeepCopy method illustrated above appears as a member method to the CustomDataType class created earlier.

static void Main(string[] args) 
{ 
    CustomDataType originalObject = new CustomDataType(); 
    originalObject.DateTimeMember = DateTime.Now; 
    originalObject.IntMember = 42; 
    originalObject.StringMember = "Some random string"; 

CustomDataType deepCopyObject = originalObject.DeepCopy(); deepCopyObject.DateTimeMember = DateTime.MinValue; deepCopyObject.IntMember = 123; deepCopyObject.StringMember = "Something else..."; deepCopyObject.SetEnumValue(CustomEnum.EnumVal3); deepCopyObject.RefreshReferenceType();
Console.WriteLine("originalObject: "); Console.WriteLine(originalObject.ToString()); Console.WriteLine();
Console.WriteLine("deepCopyObject: "); Console.WriteLine(deepCopyObject.ToString()); Console.WriteLine();
Console.WriteLine("Press any key..."); Console.ReadKey(); }

The code snippet listed above is a console application which implements the DeepCopy on objects of type CustomDataType. Modifying the member properties of the second object instance will not result in the first instance properties being modified.

NetDataContractDeepCopy

C# How to: Generate a Web Service from WSDL

Article purpose

Image FiltersWeb Service Definition Language (WSDL) is an Xml based schema that exactly details the custom data types and web service methods exposed by a web service. Developers usually generate web service client proxy code in order to call into web services. Since WSDL is an exact description of a web service it is also possible to generate code that represents the service in the form of web method stubs. This article illustrates how to generate a web service from WSDL.

Introduction

Image FiltersI’ve often found myself in a scenario where I have to interface with third parties via web services. It is often the case that third party service are proprietary, usually I find that I have very little control over the web services I’m required to interface to. Countless hours are wasted because of out dated test environments, missing/incorrect security certificates or even just trying to get hold of log files.

Image FiltersTime spent on development and testing can be significantly reduced in most cases if I had a local copy of a web service available to me. Having access to source code would be even more beneficial, being able to manipulate the data returned, testing timeouts etc. After surprisingly little effort I manage to develop a utility application capable of generating web method stubs and custom defined types in C# source code. The only required input in generating a web service is the WSDL of an existing web service.

Sample source code

Image FiltersThis article is accompanied by sample source code in a Visual Studio project which is available for download .

 

Input Web service WSDL

Image FiltersThe sample source accompanying this article defines a very simplistic web service, consisting of one web method HelloWorld(). The source code is listed below:

 [WebService (Namespace = "http://softwarebydefault.com" )]
 [WebServiceBinding (ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem (false )]
 public class TestWebService : System.Web.Services.WebService 
 {
     [WebMethod ]
     public string  HelloWorld()
     {
         return "Hello World";
     }
 }
 

The resulting WSDL is generated as illustrated by the following snippet:

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns="http://softwarebydefault.com" xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" targetNamespace="http://softwarebydefault.com" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

  <wsdl:types>

    <s:schema elementFormDefault="qualified" targetNamespace="http://softwarebydefault.com">

      <s:element name="HelloWorld">

        <s:complexType />

      </s:element>

      <s:element name="HelloWorldResponse">

        <s:complexType>

          <s:sequence>

            <s:element minOccurs="0" maxOccurs="1" name="HelloWorldResult" type="s:string" />

          </s:sequence>

        </s:complexType>

      </s:element>

    </s:schema>

  </wsdl:types>

  <wsdl:message name="HelloWorldSoapIn">

    <wsdl:part name="parameters" element="tns:HelloWorld" />

  </wsdl:message>

  <wsdl:message name="HelloWorldSoapOut">

    <wsdl:part name="parameters" element="tns:HelloWorldResponse" />

  </wsdl:message>

  <wsdl:portType name="TestWebServiceSoap">

    <wsdl:operation name="HelloWorld">

      <wsdl:input message="tns:HelloWorldSoapIn" />

      <wsdl:output message="tns:HelloWorldSoapOut" />

    </wsdl:operation>

  </wsdl:portType>

  <wsdl:binding name="TestWebServiceSoap" type="tns:TestWebServiceSoap">

    <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

    <wsdl:operation name="HelloWorld">

      <soap:operation soapAction="https://softwarebydefault.com/HelloWorld" style="document" />

      <wsdl:input>

        <soap:body use="literal" />

      </wsdl:input>

      <wsdl:output>

        <soap:body use="literal" />

      </wsdl:output>

    </wsdl:operation>

  </wsdl:binding>

  <wsdl:binding name="TestWebServiceSoap12" type="tns:TestWebServiceSoap">

    <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />

    <wsdl:operation name="HelloWorld">

      <soap12:operation soapAction="https://softwarebydefault.com/HelloWorld" style="document" />

      <wsdl:input>

        <soap12:body use="literal" />

      </wsdl:input>

      <wsdl:output>

        <soap12:body use="literal" />

      </wsdl:output>

    </wsdl:operation>

  </wsdl:binding>

  <wsdl:service name="TestWebService">

    <wsdl:port name="TestWebServiceSoap" binding="tns:TestWebServiceSoap">

      <soap:address location="http://localhost:6078/TestWS.asmx" />

    </wsdl:port>

    <wsdl:port name="TestWebServiceSoap12" binding="tns:TestWebServiceSoap12">

      <soap12:address location="http://localhost:6078/TestWS.asmx" />

    </wsdl:port>

  </wsdl:service>

</wsdl:definitions>

Generating the Web service from input WSDL

Image FiltersThe crux of this article revolves around the Generate method defined in the associated sample source code. The method makes use of the ServiceDescription and ServiceDescriptionImporter classes to reference the WSDL generated earlier. The code defined by the Generate method is very similar to the code that would generate web service client proxy code. Make note of the Style property of the ServiceDescriptionImporter object being set to ServiceDescriptionImportStyle.Server. By setting the style to server we indicate that any code generated should reflect the server interface. Had the property being set to ServiceDescriptionImportStyle.Client web service client proxy code would be generated.

Image FiltersAfter importing the service descriptions as defined by the specified WSDL and if no errors occurred we generate C# source code based on the service descriptions imported. The resulting source code generated is then saved to the file system based on the file path passed as method parameter.

 public  static  void  Generate(string  wsdlPath, string  outputFilePath)
 {
     if  (File.Exists(wsdlPath) == false )
     {
         return;
     }

     ServiceDescription  wsdlDescription = ServiceDescription .Read(wsdlPath);
     ServiceDescriptionImporter  wsdlImporter = new  ServiceDescriptionImporter ();

     wsdlImporter.ProtocolName = "Soap12";
     wsdlImporter.AddServiceDescription(wsdlDescription, null , null );
     wsdlImporter.Style = ServiceDescriptionImportStyle .Server;

     wsdlImporter.CodeGenerationOptions = System.Xml.Serialization.CodeGenerationOptions .GenerateProperties;

     CodeNamespace codeNamespace = new  CodeNamespace();
     CodeCompileUnit codeUnit = new  CodeCompileUnit();
     codeUnit.Namespaces.Add(codeNamespace);

     ServiceDescriptionImportWarnings importWarning = wsdlImporter.Import(codeNamespace, codeUnit);

     if  (importWarning == 0)
     {
         StringBuilder stringBuilder = new StringBuilder();
         StringWriter stringWriter = new StringWriter(stringBuilder);

         CodeDomProvider codeProvider = CodeDomProvider.CreateProvider("CSharp");
         codeProvider.GenerateCodeFromCompileUnit(codeUnit, stringWriter, new CodeGeneratorOptions());

         stringWriter.Close();

         File.WriteAllText(outputFilePath, stringBuilder.ToString(), Encoding.UTF8);
     }
     else 
     {
         Console.WriteLine(importWarning);
     }
 }
 

Image FiltersNotice the use of the CodeDomProvider class, creating an instance of this class allows us to generate source code. This class can also be used to compile source code to assemblies, in essence it allows developers access to a set of compilers accessible from code. As described by MSDN documentation:

A CodeDomProvider implementation typically provides code generation and/or code compilation interfaces for generating code and managing compilation for a single programming language. Several languages are supported by CodeDomProvider implementations that ship with the Windows Software Development Kit (SDK). These languages include C#, Visual Basic, C++, and JScript. Developers or compiler vendors can implement the ICodeGenerator and ICodeCompiler interfaces and provide a CodeDomProvider that extends CodeDOM support to other programming languages.

The Generated Code

Image FiltersThe code generated comes in the form of abstract classes and methods. The snippet below illustrates the raw generated code:

 [System.CodeDom.Compiler.GeneratedCodeAttribute("WSDLToWebService" , "1.0.0.0" )]
 [System.Web.Services.WebServiceAttribute(Namespace="http://softwarebydefault.com" )]
 [System.Web.Services.WebServiceBindingAttribute(Name="TestWebServiceSoap12" , Namespace="http://softwarebydefault.com" )]
 public  abstract  partial  class  TestWebService  : System.Web.Services.WebService {
     
     [System.Web.Services.WebMethodAttribute()]
     [System.Web.Services.Protocols.SoapDocumentMethodAttribute("https://softwarebydefault.com/HelloWorld" ,
         RequestNamespace="http://softwarebydefault.com" , ResponseNamespace="http://softwarebydefault.com" ,
         Use=System.Web.Services.Description.SoapBindingUse.Literal, 
         ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
     public  abstract  string  HelloWorld();
 }
 

Image FiltersThe code generated compiles without issue, but being declared abstract prevents the code from functioning as a web service implementation. I find the easiest method is to refactor the code instead of implementing inheritance. The snippet listed below represents the generated code refactored to reflect a web service implementation.

[System.CodeDom.Compiler.GeneratedCodeAttribute ("WSDLToWebService" , "1.0.0.0" )]
[System.Web.Services.WebServiceAttribute (Namespace = "http://softwarebydefault.com" )]
[System.Web.Services.WebServiceBindingAttribute (Name = "TestWebService" , Namespace = "http://softwarebydefault.com" )]
public  class  TestWebService  : System.Web.Services.WebService 
{
     [System.Web.Services.WebMethodAttribute()]
     [System.Web.Services.Protocols.SoapDocumentMethodAttribute("https://softwarebydefault.com/HelloWorld" ,
     RequestNamespace = "http://softwarebydefault.com" , ResponseNamespace = "http://softwarebydefault.com" ,
     Use = System.Web.Services.Description.SoapBindingUse.Literal, 
     ParameterStyle = System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
     public  string  HelloWorld()
     {
         return  "Hello Generated World" ;
     }
 }
 

Image FiltersThe TestWebService class and HelloWorld method is now no longer defined as abstract. In addition HelloWorld now defines a method body as required by not being an abstract method anymore.

 

About the Icons

I’ve written a number of articles exploring the topic of Colour filters. All of the Light bulb icon images featured in this article were generated from same source image, each having been manipulated by various colour filters. I made use of sample applications accompanying some of the articles I’ve published.

Image Filters Image Filters Image Filters Image Filters Image Filters Image Filters Image Filters Image Filters

If you are interested in Image filters or would like to download the sample applications and source code please have a look at the following links to articles published on this site:

 

Image Filters Image Filters Image Filters Image Filters Image Filters Image Filters Image Filters Image Filters

The original source image used to generate the icon images featured in this article has been licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license and can be downloaded from .

C# How to: Deep copy objects using Binary Serialization

Article purpose

This will illustrate how to create deep copies of an object by making use of binary serialization implemented in the form of an extension method with generic type support.

Sample source code

This is accompanied by a sample source code Visual Studio project which is available for download .

Shallow Copy and Deep Copy

When creating a copy of an object in memory, the type of copy can be described as either a shallow copy or a deep copy. The Object class defines the MemberwiseClone method, which performs a bit by bit copy of an object’s value type members. In the case of reference type members the MemberwiseClone method will create a copy of the reference, but not a copy of the object being referenced. Creating a copy of an object using the MemberwiseClone method will thus result in copies and the original object still referencing the same member object in memory when that object is a reference type. The MemberwiseClone method performs a shallow copy when invoked.

A deep copy of an object results in copies and the original object not referencing the same reference type member object in memory.

Example custom data type

The sample source code provided with this provides a user defined data type, the CustomDataType class of which the code snippet is listed below.

 [Serializable] 
public class CustomDataType  
{ 
   private int intMember = 0; 
   public int IntMember 
   { 
       get { return  intMember; } 
       set { intMember = value; } 
   } 

private string stringMember = String.Empty; public string StringMember { get { return stringMember; } set { stringMember = value; } }
private DateTime dateTimeMember = DateTime.MinValue; public DateTime DateTimeMember { get { return dateTimeMember; } set { dateTimeMember = value; } }
public override string ToString() { return "IntMember: " + IntMember + ", DateTimeMember: " + DateTimeMember.ToString() + ", StringMember: " + stringMember; } }

Notice that the CustomDataType class definition is marked with the . Objects of which the type definition is not marked with the cannot be serialized. Trying to perform serialization on objects not marked as will result in an exception being thrown.

The DeepCopy method – Implementation as an extension method with generic type support

Extension method architecture enables developers to create methods which, from a syntactic and implementation point of view appear to be part of an existing data type. create the perception of being updates or additions, literarily extending a data type as the name implies. do not require access to the source code of the particular types being extended, nor does the implementation thereof require recompilation of the referenced types.

This illustrates a combined implementation of extending the functionality of generic types. The following code snippet provides the definition.

public staticclassExtObject  
{ 
    public static T DeepCopy<T>(this T objectToCopy) 
    { 
         MemoryStream memoryStream = new MemoryStream(); 
         BinaryFormatter binaryFormatter = new BinaryFormatter(); 
         binaryFormatter.Serialize(memoryStream, objectToCopy); 

memoryStream.Position = 0; T returnValue = (T)binaryFormatter.Deserialize(memoryStream);
memoryStream.Close(); memoryStream.Dispose();
return returnValue; } }

The DeepCopy method is defined as an by virtue of being a static method of a static class and by specifying the keyword in its parameter definition.

DeepCopy additionally defines the generic type <T> which determines the return value’s type and the type of the parameter objectToCopy.

The method body creates an instance of a  object and an object instance of type . When is invoked the representation of the objectToCopy parameter is written to the specified . In a similar fashion is invoked next, reading the representation from the specified . The object returned is cast to the same type as the object originally serialized.

The implementation

The DeepCopy method illustrated above appears as a member method to the CustomDataType class created earlier.

 static void Main(string[] args) 
{ 
   CustomDataType originalObject = new CustomDataType(); 
   originalObject.DateTimeMember = DateTime.Now; 
   originalObject.IntMember = 42; 
   originalObject.StringMember = "Some random string"; 

CustomDataType deepCopyObject = originalObject.DeepCopy(); deepCopyObject.DateTimeMember = DateTime.MinValue; deepCopyObject.IntMember = 123; deepCopyObject.StringMember = "Something else...";
Console.WriteLine("originalObject: " ); Console.WriteLine(originalObject.ToString()); Console.WriteLine();
Console.WriteLine("deepCopyObject: " ); Console.WriteLine(deepCopyObject.ToString()); Console.WriteLine();
Console.WriteLine("Press any key..." ); Console.ReadKey(); }

The code snippet listed above is a console application which implements the DeepCopy extension method on objects of type CustomDataType. Modifying the member properties of the second object instance will not result in the first object instance properties being modified.

Deep copy objects using Binary Serialization


Dewald Esterhuizen

Blog Stats

  • 464,106 hits

Enter your email address to follow and receive notifications of new posts by email.

Join 210 other followers

Archives

Twitter feed


%d bloggers like this: